Extensions 1→N→G→Q→1 with N=S3xDic5 and Q=C22

Direct product G=NxQ with N=S3xDic5 and Q=C22
dρLabelID
C22xS3xDic5240C2^2xS3xDic5480,1115

Semidirect products G=N:Q with N=S3xDic5 and Q=C22
extensionφ:Q→Out NdρLabelID
(S3xDic5):1C22 = D20:26D6φ: C22/C1C22 ⊆ Out S3xDic51204(S3xDic5):1C2^2480,1094
(S3xDic5):2C22 = D20:13D6φ: C22/C1C22 ⊆ Out S3xDic51208-(S3xDic5):2C2^2480,1101
(S3xDic5):3C22 = D12:14D10φ: C22/C1C22 ⊆ Out S3xDic51208+(S3xDic5):3C2^2480,1103
(S3xDic5):4C22 = C15:2+ 1+4φ: C22/C1C22 ⊆ Out S3xDic51204(S3xDic5):4C2^2480,1125
(S3xDic5):5C22 = C2xD12:D5φ: C22/C2C2 ⊆ Out S3xDic5240(S3xDic5):5C2^2480,1079
(S3xDic5):6C22 = C2xD12:5D5φ: C22/C2C2 ⊆ Out S3xDic5240(S3xDic5):6C2^2480,1084
(S3xDic5):7C22 = D5xC4oD12φ: C22/C2C2 ⊆ Out S3xDic51204(S3xDic5):7C2^2480,1090
(S3xDic5):8C22 = D20:24D6φ: C22/C2C2 ⊆ Out S3xDic51204(S3xDic5):8C2^2480,1092
(S3xDic5):9C22 = S3xD4xD5φ: C22/C2C2 ⊆ Out S3xDic5608+(S3xDic5):9C2^2480,1097
(S3xDic5):10C22 = D5xD4:2S3φ: C22/C2C2 ⊆ Out S3xDic51208-(S3xDic5):10C2^2480,1098
(S3xDic5):11C22 = S3xD4:2D5φ: C22/C2C2 ⊆ Out S3xDic51208-(S3xDic5):11C2^2480,1099
(S3xDic5):12C22 = D30.C23φ: C22/C2C2 ⊆ Out S3xDic51208+(S3xDic5):12C2^2480,1100
(S3xDic5):13C22 = D5xQ8:3S3φ: C22/C2C2 ⊆ Out S3xDic51208+(S3xDic5):13C2^2480,1108
(S3xDic5):14C22 = D20:16D6φ: C22/C2C2 ⊆ Out S3xDic51208-(S3xDic5):14C2^2480,1110
(S3xDic5):15C22 = C2xC30.C23φ: C22/C2C2 ⊆ Out S3xDic5240(S3xDic5):15C2^2480,1114
(S3xDic5):16C22 = C2xDic3.D10φ: C22/C2C2 ⊆ Out S3xDic5240(S3xDic5):16C2^2480,1116
(S3xDic5):17C22 = C2xS3xC5:D4φ: C22/C2C2 ⊆ Out S3xDic5120(S3xDic5):17C2^2480,1123
(S3xDic5):18C22 = S3xC2xC4xD5φ: trivial image120(S3xDic5):18C2^2480,1086

Non-split extensions G=N.Q with N=S3xDic5 and Q=C22
extensionφ:Q→Out NdρLabelID
(S3xDic5).1C22 = D20.39D6φ: C22/C1C22 ⊆ Out S3xDic52404-(S3xDic5).1C2^2480,1077
(S3xDic5).2C22 = C30.C24φ: C22/C1C22 ⊆ Out S3xDic52404(S3xDic5).2C2^2480,1080
(S3xDic5).3C22 = C15:2- 1+4φ: C22/C1C22 ⊆ Out S3xDic52408-(S3xDic5).3C2^2480,1096
(S3xDic5).4C22 = D12.29D10φ: C22/C1C22 ⊆ Out S3xDic52408-(S3xDic5).4C2^2480,1106
(S3xDic5).5C22 = D12.2F5φ: C22/C1C22 ⊆ Out S3xDic52408-(S3xDic5).5C2^2480,987
(S3xDic5).6C22 = D12.F5φ: C22/C1C22 ⊆ Out S3xDic52408-(S3xDic5).6C2^2480,989
(S3xDic5).7C22 = C5:C8.D6φ: C22/C1C22 ⊆ Out S3xDic52408(S3xDic5).7C2^2480,1003
(S3xDic5).8C22 = D15:C8:C2φ: C22/C1C22 ⊆ Out S3xDic52408(S3xDic5).8C2^2480,1005
(S3xDic5).9C22 = C2xS3xDic10φ: C22/C2C2 ⊆ Out S3xDic5240(S3xDic5).9C2^2480,1078
(S3xDic5).10C22 = S3xC4oD20φ: C22/C2C2 ⊆ Out S3xDic51204(S3xDic5).10C2^2480,1091
(S3xDic5).11C22 = S3xQ8xD5φ: C22/C2C2 ⊆ Out S3xDic51208-(S3xDic5).11C2^2480,1107
(S3xDic5).12C22 = S3xD5:C8φ: C22/C2C2 ⊆ Out S3xDic51208(S3xDic5).12C2^2480,986
(S3xDic5).13C22 = S3xC4.F5φ: C22/C2C2 ⊆ Out S3xDic51208(S3xDic5).13C2^2480,988
(S3xDic5).14C22 = D15:M4(2)φ: C22/C2C2 ⊆ Out S3xDic51208(S3xDic5).14C2^2480,991
(S3xDic5).15C22 = C5:C8:D6φ: C22/C2C2 ⊆ Out S3xDic51208(S3xDic5).15C2^2480,993
(S3xDic5).16C22 = C2xS3xC5:C8φ: C22/C2C2 ⊆ Out S3xDic5240(S3xDic5).16C2^2480,1002
(S3xDic5).17C22 = S3xC22.F5φ: C22/C2C2 ⊆ Out S3xDic51208-(S3xDic5).17C2^2480,1004
(S3xDic5).18C22 = C2xD6.F5φ: C22/C2C2 ⊆ Out S3xDic5240(S3xDic5).18C2^2480,1008
(S3xDic5).19C22 = S3xQ8:2D5φ: trivial image1208+(S3xDic5).19C2^2480,1109

׿
x
:
Z
F
o
wr
Q
<